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PREVFACE

Prediction problems frequently arise in which the regression weights
must be based on a relatively small number of ceriterion observations. In such
cases, cwrrent teehniques permit the utilization of only a very few predictors,
even though many more may be available. Unless one or more of the pre-
dictors is closely related to the eriterion, accurate predictions eannot be made.
The possibility of increasing the accuracy of predietion under such circum-
stances through the use of reduced-rank methods is investigated in this study.

On the basis of normal regression theory, o gencral reduced-rank model
is formulated m terms of prediction from factor scores. The problems of
selecting a method of factoring, of selecting an optimal subset of prespecified
size from among a given set of factors, and of selecting an optimal rank are
considered. It is shown that in the absence of eriterion observations, the
optimally chosen reduced-rank solution will be the one that accounts for the
greatest proportion of variance in the full-rank predietor matrix. Prediction
either from subsets of the original predictors, which are equivalent to tri-
angular factors, or from principal-axes factors is considered. It is concluded
that, when degrees of freedom are sufficiently limited, the most accurate
predictions obtainable will be those based on the largest principal-axes factors.
As a tentative solution to the problem of optimal rank, estimates are derived
which are intended to indicate the accuracy of prediction to be expeeted
when regression weights computed on the basis of data in one sample are
applied to data in other samples.

An empirical eomparison of five reduced-rank methods 1s carried out,
employing a variety of ranks, sample sizes, and criteria. The five methods
inciude prediction from the principal-axes factors, selected in three different
ways, and from the original predictors, selected in two different ways. The
results indicate that weights computed by the method of largest principal-
axes factors on samples with as few as 30 cases can give predictions as accurate
as those from weights computed by conventional techniques on samples of
several hundred cases.

The present monograph was submitted as a doctoral disscrtation at the
University of Washington in July 1962. The writer wishes to thank his
sponsor, Professor Paul Horst, for the invaluable blend of eriticism and
encouragement that he provided. The work for the present monograph was
largely supported by Office of Naval Research Contract Nonr. 477(33) and
Public Health Research Grant M-743(C7) (principal mvestigator: IPaul
Horst). Acknowledgment is due Mrs. Judy Goodstein and Mrs. Helen Ranck
for their work in typing and proofreading the maunuseript.

GeorGE R. BUREET
Pittsburgh, Pennsylvania
October, 1963
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CHAPTER 1

INTRODUCTION

Basic Requirements

Accurate predictions of an individual’s degree of success or failure in
such socially significant activities as a college eourse, training for some voca-
tion, or a particular job would be of inealculable utility, both to the individual
concerned and to the community. Remarkably aceurate predictions of this
naturc can be obtained with existing statistical techniques, provided that two
basie requirements are satisfied. I'irst, there must be measurements available
on a number of variables related to performance in the activity of interest.
It must be possible to obtain these measurements on any individual before
he engages in the activity. Second, such measurements must be obtained for
a large number of persons who subscquently engage in the activity.

The first requirement can almost always be met. Indeed, it is usually
possible to find many variables having at least some relation to performance
in the criterion activity. To obtain measurements on a large number of
variables may be expensive, but aceurate predietions of many activities are
of suflicient value to warrant large expenditures. The scecond requirement is
much less likely to be satisfied, since the number of persons who actually
engage in & particular activity is often limited. This is particularly true for
activities requiring a: unusual degree of ability, where accurate predictions
are apt to be most desired. Many socially significant activities are full-time
oceupations which individuals must pursue for years before their success or
failure ean be determined. If the number of persons engaging in such an
activity is too small to permit application of existing techniques, no feasible
expenditure will yield accurate predictions. We need new techniques.

The Statistical Model

A system for obtaining the best possible predictions for a given criterion
would be the following. First, determine all variables, termed predictors, not
statistically independent of the eriterion. Then obtain measurements of pre-
dictors and criterion on a sufficiently large validation sample so that every pos-
sible configuration of predictor values is represented by a large number of
cascs. Compute the eriterion mean for cach of these configurations. To make a
prediction for a particular ease, determine the configuration of the predietors
for that case. The prediction will be the eriterion mean for cases in the valida-
tion sample having that configuration,

1



2 REDUCED RANK MODELS FOR MULTIPLE PREDICTION

Such a system 1s unworkable because of practical limitations on sample
size and number of predictors. Under ecertain circumstances, morcover, a
much stmpler system could give equally accurate predictions. If, for example,
the criterion means were known to be functionally related to the predictors,
1t would only be neccessary to determine this funection. In practice, such a
functional relation is virtually always assumed. It may also happen that a
small subset of all variables statistically related to the criterion wil! give pre-
dictions as accurate as the entire set. Even where a very large number of
independent predictors is readily available, the number that may actually be
used is limited by the available sample size. This is because it is necessary
to have many more cases than there are parameters in the assumed functional
relation between predictors and eriterion mean. Otherwise one could not
obtain stable estimates of these parameters.

In least-squares or regression theory and also in correlation theory, the
mean of the criterion is assumed to be a linear funetion of the predictors. In
corrclation theory, predictors and criterion are assumed to be random vari-
ables having a joint multivariate normal distribution. In regression theory,
the criterion is assumed to be a normally distributed random variable, while
the predictors are thought of as being fixed. Anderson (1958, p. 61) recom-
mends using one model or the other depending on whether or not the predictors
may be cousidered random. NMood (1950, p. 312) states that, in practice, most
correlation problems can be nore appropriately handled by regression meth-
ods. In many cases, the two models have led to equivalent procedures; under
the null hypothesis, estimates of regression weights, test eriteria, and prob-
ability theory are all the same. Fowever, when the null hypothesis (viz., that
predictors and eriterion are independent) is not true, the probability theory
differs.

In prediction problems in psychology, the predictor variables are generally
random rather than fixed, and the null hypothesis is rarely true. Thus cor-
relation theory would appear to be more appropriate. However, since correla-
tion theory is considerably more complex and difficult to apply than regression
theory, the latter is generally used, with the hope that the praetical differences
between conclusions drawn from the two models will be negligible. In the
present study, prediction problems will for the most part be considered within
the context of regression theory.

It may prove uscful at this point to make the distinetion between actual
prediction problems and validation problems. In validation problems, the
goal is to demonstrate a systematie relationship between a number of “inde-
pendent variables” and a “dependent variable.” To accomplish this, one
formulates the null hypothesis of no relattonship and hopes to reject it at
some level of confidence. Thus, for validation problems, correlation theory
and regression theory are equivalent. In prediction problems, on the other
hand, the null hypothesis is assumed to be false. The goal is to obtain a



GEORGE R. BURKET 3

regression cquation which, when applied to predictor measures in future
samples, will give the most accurate estimate possible of the corresponding
criterion values. Having obtained such a regression equation, one would also
wish to have estimates or confidence intervals indicating the aceuraecy to be
expected when the regression equation is applied to new samples. In valida-
tion problems, the multiple correlation is often used as a measure of relation-
ship between the dependent and independent variables. It is sometimes
termed a validity coefficient, or simply a validity. In prediction problems,
the correlation between the prediction and the eriterion in new samples may
be used as a measure of aecuracy of prediction. Such a coefficient may be
termed a weight-validity to distinguish it from the multiple correlation
coeflicient between the prediction battery and the eriterion in the original
sample.

Purpose of the Study

The present study is concerned with predietion problems as opposed to
validation problems. Regression theory in its current form is adequate for
those appiications in which the available number of cases far exceeds the
available number of predictors, 1.e., in which the number of degrees of free-
dom is large. In such cases, weight-validity will be very close to battery

alidity, and the least-squares estimates of the regression weights will provide

optimal predictions. But when the number of predictors available is relatively
large in relation to sample size, as is perhaps more often than not the case,
problems arise that lack satisfactory theoretical answers. One such problem
1s that of estimating an index, such as weight-validity, that will provide some
idea of the accuracy of predietion to be expected in new samples. A more
important problem is that of determining the regression weights wlhich will
give the most aceurate predictions possible in new samples.

These optimal weights will not in general be given by the eonventional
least-squares solution applied to all available predictors. I'or example, if
the number of predictors is the same as the number of cases in the sample, the
least-squares weights for an arbitrary subset of predictors will usually give
better weight-validity (though lower validity) than the weights for the entire
set. More generally, in such an extreme case, any lower-rank approximation
to the matrix of predictor values would give better predictions than the
complete matrix. As the situation becomes less and less extreme, there must
come a point where some ranks and some methods of rank reduction and not
others are preferable to the complete matrix. At a still less extreme point, the
entire sct of predictors will presumably give better predictions than any
reduced-rank approximation. Still, when predictors are discarded, the loss of
accuracy of prediction may be so slight as to be more than offset by the prac-
tical savings of not having to measure as many predictors.

Thus in any prediction problem where the number of degrees of freedom
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is Hmited, the question of rank reduection arises: can the complete predictor
matrix be improved upon, and if so, which method of reduction aud which
rank will give the greatest improvement? When its purpose is to give more
accurate prediction by increasing degrces of freedom, the much-studied
predictor sclection problem is a special case of the rank-reduction problem.
Predictor selection methods ave more often used, however, in situations where
an upper limit on the size of the prediction battery is given by considerations
of cost. The emphasis is thus on obtaining an optimal sct of predictors of a
particular size rather than on obtaining optimal predictions regardless of
battery size. Perhaps beeause of the prevalence of the former emphasis,
particularly before the advent of electronic computers, the problem of pre-
dictor sclection has received a great deal more attention than the general
problem of rank reduetion.

Most methods of predictor selection are alike in selecting first the variable
having the highest single validity, and adding, step by step, the variable
which, together with those previously seleeted, will give the greatest increase
in the multiple correlation with the criterion. These so-called aceretion
methods differ with respect to computational procedure and method of
deeiding how many predietors to use. Perhaps the computationally simplest
such method is the squarc-root (or triangular-factoring) method deseribed
by Summerfield and Lubin (1951). Horst has generalized and extended this
method for absolute (1955) and differential (1954) prediction of multiple
criterin. Horst and MacEwan (1960) have deseribed a method which is
essentially the reverse of the aceretion method. Here one eliminates at each
step the predictor contributing least to the multiple correlation. The accre-
tion and elimination methods will not in general result in the same battery,
nor will either of them neecessarily give the battery of given size having the
highest obtainable validity.

Horst (1941) has suggested two models for reduced-rank predietion. His
rationale is based npon the factor analysis hypothesis that the predictor matrix
is basie only becanse of the presence of etror or specific factors. Gue of these
models assumes the presence of specifies. Accordingly, the matrix of predictor
intercorrelations is augmented by the veetor of ertterion correlations and com-
munality estimates are placed in the diagonal prior to factoring. Teast-squares
weights are then computed for the common factors. This method was tested
by Leiman (1951) using 12 predictors and computing weights on samples of
30 cases. A rank-3 solution gave weight-validitics which were significantly
higher than those obtained with the full-rank solution. This method has the
disadvantage of being difficult to treat theorctically, since the nature of
communalities and of the factor scores (which are not unique) are not well
understood. The other model suggested by Horst accomplishes rank reduction
by attempling to remove crror factors rather than specific factors. Here the
best least-squares approximation to the predictor intercorvelation matrix is
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used, tlie principal-axes solution. One advantage of this method is that it is
theoretically straightforward. Another advantage is that rank reduction is
accomplished independently of the eriterion and thus does not ecapitalize
on the errors in the criterion.

Virtually the exact opposite of this model has beeu implicitly suggested
by Guttman (1958). Since the mverse of the predictor correlation matrix is
direetly involved in computing regression weights, one might well base pre-
dictions on the best lower-rank approximation to the inverse rather than on
the approximation to the intercorrelation matrix. The best set of factors for
approximating the mverse is, as Guttman points out, the worst for approxi-
mating the intercorrelation matrix. In view of this paradox, perhaps one
should abandon approximation as a criterion for selecting the factors to
be retained for predietion and simply use those factors giving the highest
multiple correlation, as is attempted in the predictor-selection methods.
Certainly the basie assumption of the rationale for approximating the inter-
correlation mairix may be questioned: that the reliable variance is concen-
trated in the larger princpal-axes factors, the smaller factors being composed
mainly of error. Tor example, in a study by Davis (1943) involving nine
principal-axes factors, a strict correspondence between variance contribu-
tion and reliabilitv was not found; e.g., the split-half reliability for the eighth
factor was larger than for the fourth factor.

The present study proceeds along both theoretical and empirical lines.
Tirst an attempt is made to work out some of the consequences of regression
theory for reduced-rank models. Sinee, as noted above, there is reason to
question the appropriateness of regression theory for psychological predic-
tion problems, an empirical comparison of five reduced-rank procedures is
also carried out. The methods used were predictor elimination, predictor
selection, the method of approximating the intercorrelation matrix, the
method of approximating the inverse, and the method using the prineipal-axes
factors giving the highest multiple correlation. As will be seen, both the
theoretical and the empirical evidence favors the method of approximating
the intercorrelation matrix.



CHAPTER 2

IMPLICATIONS OI' REGRESSION THEORY I'OR
REDUCED RANK MODELS

The General Linear Hypothesis

Regression theory was first worked out at the beginning of the 19th
century by Gauss and Legendre and has since, of course, been presented by
innumecrable authors from various points of view. Among recent sources, a
rigorous presentationr with geometrieal interpretations has been given by
Scheffé (1959). A simpler presentation entirely in terms of matrix algebra
is given by Kempthorne (1952). Anderson (1958) provides a generalization
to multiple eriteria. A presentation in terms of deviation scores may be found
in Cramér (1946). Some results froia vegression theory which are relevant to
the rank-reduction problem are summarized below. The derivations, which
arc for the most part omitted, may be found in the sources mentioned above.
Let

7 be a column vector of N observations on the eriterion;

z be an N X M matrix of rank 3/ < N, cach row of which represents
an observation on each of 3/ predictors;

¢ be an Nth-order column veetor of uncorrelated errors, cach dis-
tributed normally with mean zero and variance ¢°;

8 be an M X 1 veetor of population regression coefficients;

C be a covariance matrix of the variable given in the subseript.

The general linear hypothesis is that

1) y =28+ e.

The assumptions regarding e, apart from normality, may be stated as
2 I(e) =0,

(3) C. = Eee’) = ¢°1.

From these equations it follows that the eriterion has the expectation
“) E(y) = 28,
and the covariance matrix

() C, = El(y — 28)(y — 28)'] = «'I.
6
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Let

B be the 31 X 1 vector of least-squares estimates of the population
regression eoefficients;
7 be the N X 1 veetor of estimates of the criterion based on 3.

Then

6) B = (a'z) 2"y,
and
(7) § = zp.

The vector § has the property of minimizing the sum of squares of the errors
in estimating y from §. These errors will be orthogonal to the predietors and
also to the estimates themselves. The error sum of squares has the expeetation

8) Ely — 9’y — 9] = N — M)d".
Thus

e _ =9y =19
©) =5 _u

provides an unbiased estimate of o°. What is generally termed the standard
error of estimate is given by ¢. The variable ¢ is distributed independently
of B.

The estimates of the regression coeffieients have the expeetation

(10) E®) =8,
and the covarianee matrix
(11) Cs = E[B — BB — B = d"@'2)™".

The estimates of the eriterion have the same expectation as the eriterion
itself,

(12) E(y) = E@p) = » E@) = 28,
but are not independent, sinee from (7), (11), and (12),
(13) C; = Bl(xf — 26)(@f — 28)’] = 2Csx’ = o"2(x'r) " 'z’.

The canonieal form of the general linear hypothesis may be obtained
as follows. Let = be expressed as

(14) x = ub',

wherc % is an N X M orthonormal matrix of factor scores, and bisan M X M
matrix of factor loadings. Let V be an N by N — M orthonormal matrix
sueh that the N X N matrix /T in

(15) H=1{u 1]
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1s an orthonormal matrix. The matrices «, b, and v are always obtainable,
and can be determined solely from the predictors without reference to the
criterion. Then the Nth-ovder vector of {ransformed criterion values

I P
(16) 2= |2 =1y ={"Y
2, v'y |
has the expectation
(7) £E) = | P& = | VF
E(zy) 0.
and the covariance matrix
18) C, =o1.

Thus the best possible predictions for the NV — A transformed observations
z, will always be zero, regardless of the true regression coeflicients or of the
particular values of the eriterion. The least-squares estimates of the regression
weights are so chosen as to reproduce exactly the 37 transformed obscrvations
2z, from

A

(19) 2, =u'y =0b'p,
so that
(20) 8= by,

Equation (20) may also be obtained by putting (14) in (6). Thus, errors can
oceur only in estimating z,, and sinee the estimated value of 2 is zero, we have

1) by — ) — i) = 22..

Metric and the Status of the Multiple Correlation

In regression theory, the multiple correlation coeflicient and other func-
tions of the predictors such as means, standard deviations, and covariances
do not have the status of population parameters. This is because the predietors
are not assumed to be random variables but rather fixed values. Thus, regres-
ston theory does not admit of statistical inferences about such functions.
However, one can make statistical inferences about such characteristies of
future samples as depend on the criterion, provided that the relevant features
of the predictor matrix in the future samples are assumed to be known in
advance. FFor example, one can assume that exactly the same predictor matrix
will be obtained in future samples or merely that the predictor intercorrela-
tions will be the same. Using the latter assumption and scaling the criterion
appropriately, one can define both a sample and a population multiple cor-
relation coefficient.
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Ixeept where eorrelations are coneerned, no assumptions about metrie
are made in the present paper. Iowever, it should be noted that if the equa-
tions of the preeeding seetion were to be applied to data in the original units
of observation, a ecorrection for origin would be required. This correetion will
be aceomplished if a predictor is added which 1s defined to be unity for all
cases. If this is done, cquation (6) of the preeeding seetion may be shown to
be identical to the usual formulas for raw-score regression weights, whiech
are typieally expressed in terms of means and eovariances or correlations and
stundard deviations.

The question of metrie also arises in connection with defining multiple
corrclation. The assumption made here whenever correlation cocfficients are
discussed is that all measures are normalized, i.e., expressed as deviations
from the sample mean in units of the sample standard deviation multiplied
by the square root of the number of cases in the sample. We may now define
the square of the multiple correlation in the sample as

(22) R = Ja’zB = y'x(@'2) 2’y

and in the population as

(23) of = p'a’ap.

If we let » be the 37 X 3 matrix of predictor intercorrelations, (23) may be
written as

24) Pl = BB,

sinee, on the basis of the assumption about the metrie,

(25) ="z
Thus p will be a population parameter if it is assumed that the predietor
intercorrelations will be the same in all samples.

An unbiased estimate for p may be obtained as follows. The expeetation
of the criterion sum of scuaves is, from (1),

(26)  E('y) = El(x8 + 0)'(B + )] = B'x'xf + 28'2'E(e) + E('c).

Trom (23), the first term on the right is p* and from (2) the sceond term is
zero. The third term is the trace of (3). Thus

(27) Ey'y) = o + No°.
Since the errors of estimate are orthogonal to the estimates, we have
(28) Vy=§9+ @ — 5 — 9.

From (7) and (22), the first term on the right is 2°. Thus from (8) and (27),
(29)  E@®) =Ly — Ll — 5@ — ] .
=o'+ No* — (N — M)o® = p° 4+ Md°.
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Given the assumed metrie, the criterion sum of squares will always be unity,
so from (27),

(30) o=t
and (29) may be written as

M@ —
(31) ER) = p" + (—Nﬂ'

Trom (31) it is clear that the extent to whieh I overestimates p* will vary
directly with the number of predictors and inversely with the sample size.
Solving equation (31) for p° we obtain the following unbiased estimate for p*:

NR®* — M

2 = ey
(32) Be ==

Equation (32) will be recognized as the familiar “shrinkage” formula for
multiple R.

It is perhaps worth noting that R, or “shrunken R’ is not an estimate
of weight-validity or of the shrinkage to be expeeted in the correiation be-
tween the criterion and its estimate if weights computed on one sample are
applied in other samples. It does provide an estimate of the eorrelation that
would have been obtained between the eriterion and its estimate if the popula-
tion regression weights had been used instead of their ieast-squares estimates.
Shrunken R may also be thought of as an estimate of the multiple R that could
be obtained in a very large sample having the same predictor intercorrelation
matrix as the observed sample.

The Accuracy of Prediction in Future Samples

In predietion problems we wish to compute a sct of weights from a given
sample which will give the most accurate predictions obtainable when applied
to other samples. Specifically, we will assume that the sum of squares of the
errors of predietion in each other sample is the quantity to be minimized.
If we let 8 be a set of weights obtained in some fashion from a previous
sample, this sum of squares may be written (Kempthorne, 1952) as

83) (y— 2Bl — 2B = (y — =h)'(y — 2B)

+ e’z(x'z) e + 2(8 — B)'z’e + (B — B)'x’'x(B8 — B).
Ths expected value is
(34) Elly — zB)'(y — zB)] = No* + (8 — B)'a'z(® ~ ).

Now the second term on the right has an expeetation in the sample from
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which § was obtained. Assuming that the usual least-squares estimates are
employed, we have, using equation (11),

(35)  E[8— B)x'a@ — B)] = tr [E[x(B — BB — B)x']]

= tr @Cp’) = o tr [xz’z) "'z’].
Using (14), we may write the matrix whose trace we require as
(36) 2(x’x) e’ = ub’(bb") Tbw’ = ub’b b bu = .
Putting (36) in (35), we may write
(37) E[B — fva®B — B)] = o tr () = o tr (wu) = otr ({) = M2
Now if we assume that z’z, or equivalently the factor-loading-matrix b, is
the same in all samples, we would expeet the sum of squares of errors of pre-
diction to be (N + M)d*. More generally, if §is any estimate of 8 eomputed
from the original sample, we would expeet the sum of squares of errors of

prediction in future samples, provided that the factor-loading matrix is the
same as in the original sample, to be

(38) ¥ = No* + B[ — Bya'=(8 — B)].

Thus ¢z will be taken as an inverse index of weight-efficiency: the smaller
it is, the more suitable 8 will be for a prediction problem. In partieular,

(39) vy = (N + M)’

Sinee the interpretation of (38) is basic to the following development, we
will examine its derivation with some care. Certainly ¢ is not a mathe-
matical expeetation in the usual sense, but rather an expectation of an expecta-
tion. Since N, o, 8, and (by assumption) 2/z are fixed, the expeetation in
(34) is a funetion of B, and is thus fixed as soon as the original sample is
drawn. Since this quantity is a function of the criterion in the original sample,
its expectation in this sample i1s ¢ The quantity that we are directly eon-
eerned with minimizing is the one in (34). This quantity is itself not deter-
mined in advance of drawing the first sample, but its expectation is deter-
mined. Rather than minimize the quantity of direct interest, then, we attempt
to minimize its expectation.

An estimate of weight-validity may be obtained from (39). Assuming
the metrie of the previous section, and using (9) and (22),

, o _Yy—97F _ 1—R
(10) S = N_—M, " N—MN

Thus, an unbiased estimate for ¥, is, from (39)

" N M a
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For an arbitrary set of weights B, the weight-validity is

(12 W= L
VE B

The sum of squares of errors of prediction is

(43) S=(—aB){y —af) =1— 2yzB + B'x'zp.
If (42) is substituted in (43),
(44) S =1—2W~F2aB + B'z"28 .

Sinee § is the vector of least-squares weights from the original sample, under
the assumption that z'z is constant, the radieal in the second term on the
right of (44), and the third term on the right become, respeetively, B and R?
of the original sample. Solving (44) {or 11 gives

) S DR T
(45) W= T

Now to obtain an estimate of T, we substitute for S in (45) the estimate of
its expectation given by (41). Simplifying, we obtam

~ NR* — M

(46) W = RN =)

To sce the relation of the estimated weight-validity to the estimated popula-

tion multiple eorrelation as defined in the preceding section, we put (32) in
(46), obtaining

7 =B _Bep
Fan Fan

Sinee R is less than R (unless R is unity), the left-hand factor on the right
of (47) will be less than cne, so 17 will be less than Re.

Perhaps a more important application of (38) is its use as a criterion
for evaluating reduced-rank models for eomputing regression weights. An
alternate approach is indirectly suggested by Leiman (1951, pp. 3—4). There,
the assumption is made that the least-squares weights for the lower-rank
system will give better predictions than least-squares weights for the full-
rank system to the extent that they provide eloser approximations to the
population regression weights for the full-rank battery. The reason for
rejecting this position is as follows: It is well known that the optimal weights
for a subset of predictors may differ greatly from the weights of the same
predictors when the full battery is retained. A mathematical statement of
this fact is given in (104). Thus one cannot properly measure the suitability of
a reduced-rank sct of weights in terms of how closely they approximate the
full-rank weights. It scems more likely that the least-squares weights for
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a subset of predictors or of factor scores may, beeause of the inereased number
of degrecs of freedom, be so much more stable than the weights for the full
set as to give more aceurate predictions despite the loss of information. In
any case, the criterion in (38) involves no assumptions other than those
usually made in applications of regression theory to predietion problems and
Is, moreover, referred directly to the expeeted errors of predietion.

In evaluating reduced-rank solutions, a question arises as to the number
of factors to be included in the general linear hypothesis. If the full-rank
hypothesis is reiained, then the quantity No® in (38) is fixed, so that the only
way of improving on 3 will be to find a 8 for which the second term is less than
M. If, however, a smaller sct of, say, L predictors (cither the original ones
or factor scores) is hypothesized, both terms change. The variance of the
errors, o, will of course increase in proportion to the systematic variance
in the eriterion accounted for by the discarded predictors. If we denote this
larger variance by o; and the least-squares weights for the reduced battery
by 8, then

(48) ¥; = (N + L)oi,

as will be seen in the next seetion. Thus the 8 for any subset of L predictors
for which (N + L)o} is less than (N 4 M)o® will be an improvement over J.

Another possible application of (38) would be in obtaining a eriterion
for how many predictors to retain in the standard predictor-seleetion pro-
cedures. If we denote by R, the multiple correlation obtained with a set of
L predictors, this eriterion is obtained direetly from (41):

“ .LNV IJ 2.
(19) =L a - R,

Onc would retain those L predictors for which ¢7 is the smallest. We use §;
rather than 17 since weight-validity is an indication not of the actual crrors
of prediction but of the errors which would have heen obtained if the predie-
tions could themsclves have been weighted after the criterion had been
observed. In other words, a corvelation coefficient between two variables is
independent of differences in location and scale, whereas actual errors of
prediction are in part determined by such differences.

The General Reduced-Rank Modcl

The reduced-rank solution will first be developed in terms of a general
factor model. Predictor seleetion and predietion from principal-axes factors
will then be considered as speeial eases of this model. Let

(50) 2’z = bV’
he any complete factoring of 2’z. Then

(51) u = z(b")”"
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will be the orthonormal matrix of factor scores. The matrices x, u, and b are
the same as those in (14). Now we partition « and b after the Lth column so
that, from (14),
o by | 7 ,
52) x = [u, ) = u, b + w,bi.

Lbs]

We will assume that the eolumns of © and b have been permuted so that the L
factor seores retained for prediction arc given by u,, or (if one prefers to
think of prediction from a rank-L approximation to x) by ,b]. We will now
show that the two assumptions are equivalent for prediction problems. Note
first, however, that in future samples the weights must be applied to the
predictors rather than to the factor seorcs or to the lower-rank approxima-
tion. The latter must be obtained as a row transformation of the predietion
matrix, sinee a prediction equation must be applicable to individual eases.
Let the inverse of b be conformably partitioned and denoted by B’ so that

f i l— ’ 7 r —
53) B'b = ‘B1 [blbg] = lBlbl Blb2] - I 0 |
LBz “Bib, Bibd L0 1)
Then
(54) U, = ;‘;Bl

1s 2 unique solution for u; as a transformation on the rows of 2. To sce this,
we let v be any other such transformation, and let

(55) E =+ — B,.

Then

(A6) w, =2y =B, + 2F = v, + zF
so that

7 ol = 0,

which, sinee z is basie, implics that E is zero. Now let 8, be a set of least-
squares weights for u,. Sinee u, is basie, 8. 1s unique. Let 3, be a set of least-
squares weights for «,b?. Since w,b] is nonbasie, 3, is not unique. If

(58) ulbl,Bb — Y =&
and
(59) wh. — Y = e,

the sums of squares of €, and of e, will be minimized by 3, and 3,, respectively.
The former sum of squares ean be no less than the latter, for we could always
take

(60) B. = biB.
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The two sums of squares will be equal if we let

(61) B, = Bib..

Therefore, a set of least-squares weights for (58) will be given by §, in (61)
and

(62) ele, = €le,.

But sinee 3, is unique, b?3, must be unique, and (60) holds for all least-squares
solutions B, of (58). Thus, (58) and (59) ave identieal, and beeause of the
uniqueness of B, in (54), we have

as a unique set of least-squares weights for « under the assumption of redueed
rank.

If it is assumed that the eriterion depends solely on the subset of L
faetors retained for predietion, the general linear hypothesis takes the form

(64) y = zBB. + ey,

where @, 7, and e, are defined in the first seetion of this chapter. All of the
results of that seetion may be obtained for the present hypothesis if we
replaee x by 2B, and 8 by B, in (1) through (13). In like manner, (48) may be
obtained from the derivation of (39). Thus, from (6) and (54) the least-
squares estimate of 8, is given by

(65) B = (i) uly = uly.
It has, from (10), the expeetation

(66) E@.) = 8.

and, from (11), the covarianee matrix

{67) Cs, = oruu)™ = o7l.

An unbiased estimate of the veetor of weights to be applied direetly to the
predictors is given by § as defined in (63), sinee

(68) E@) = E(B.3.) = BER) = Bip..

The eovariance matrix for these weights will be

®9)  Cp = E[(B,A. — BiB)(B:B. — B8] = B.CyBi = o1B,BI.

The estimates of the eriterion will now be, from (7),

(70) §. = 2B,3, = 8.

The expected sum of squares for the errors of estimate becomes, from (8),
(71) Elly — §2)'y — §)] = (N — L)o%.
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The matrix I for transforming the criterion observations to canonical
form may take exactly the same form as in (15):

(72) IT = (u, us, v).

The matrix [, t] is now arbitrary to the extent that only » was arbitrary
before. It will be convenient, however, to define IT as in (72). Partitioning
the transformed observations somewhat differently from the way it was done
in (16), we let

z ﬂtiyl
|
(73) z =z |=Hy=luy i
23 v’y

The clements of 2, and 2, will all have expected values of zero, while the
expectation of z, will be

(74) B@) = Euy) = E@.) = B..
The unbiased estimate for ¢; may be expressed in terms of 2, and 2, as

(75) 2 2323+ 2323
'] g, = i
! N -L

The implications of using a reduced-rank solution instead of the con-
ventional solution can perhaps be better understood if the full-rank hy-
pothesis of (1) is retained, rather than the rank-I hypothesis of (64). We
first observe that §is a biased estimate of 3, since

76) E@) = E(Buly) = Bulag = B,biB.

Jts covariance matrix, which will now be proportional to ¢° instead of to o7,
is given by

77 Cs = E[(Buy — Bbip)(Buly — BibiB)’] = BiE(ufec'n,)B]

since premultiplying (1) by ] gives

(78) uly = biB + ule.

Continuing, with (3) in (77),

(79) Cs; = BuL(ee"w,B, = ¢'B,\Bj.

The first and second moments about 8 will be

(80) E@ —B8) =Bb8—8=—(—Bb)B = —B:bis
and

®1) BB - BE - 8]
= C3 + [E@ — BIEG — )Y = o’B.B] + B:biBs'b.Bi.
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Equation (11) may be written as
(82) Cy = o’(x'2)” = ¢’BB = ¢’B\B] + ¢'B.Bj.

Thus, from the standpoint of relative cfficiency (Mood, 1950, p. 149) in
estimating 8, 5 and § may be compared in terms of the diagonals of the
rightmost terms of (81) and (82). If the trace of the former is smaller, on
the average the reduced-rank estimates will be more efficient than the full-
rank estimates.

The expeeted value of z as given by (73) will now be

[uzg]  [0i8]
(83) BE) = |wap | = | big 3
v’ - 0|
We recall from (19) that 3 is computed <o that
(89 [=]=[ %1
2] LbiB
But § is computed to reproduce only 2,
(85) 2 = uly = biBady = biB.
We have
(86) biB = biBuly = 0.

Thus, the reduced-rank solution, in effect, predicts a value of zero for 2z,
rather than a value of 3. If the clements of b8 are smaller than o°, then
the prediction of zero would have the higher relative efficiency.

The statistic 7 will be an overestimate of ¢°. To see this, first note that

(87) Ezizs + 2i2) = tr [E(2,25)] + tr [F(z:29)]

tr (°I + B3B3’ b)) + tr (¢°])

= (M = L)o* + g'bbiB + (N — M)
= (N — L)¢* + 8'b,b38.

It

Then from (75),

(88) Bl = o + S22

Next, we deseribe the effect of hypothesized rank on our inverse index
of weight-efficiency, 3. We will denote this index and its estimate by a5 and
3, where the full rank 3 isassumed, and by .5 and {5, where the reduced-
rank, L, is assumed. Mathematical expeetation under the hypothesis of full
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rank will be denoted by E,( ) and under the hypothesis of reduced-rank
by E.().

The reduced-rank index ;y; was given by (48). To obtain the full-rank
index, we first evaluate the rightmost term in (38). Using (81),

(89)  Eu[B — BY2'z(8 — B)] = ir [EE — B)E — 8)J']

o tr (@B.Bja’) + tr (xB,biB'b,Biz")
o tr (wul) + tr (ubiBR boub)

o tr (uju,) + B'bulubl

La® + 8'b,bi8.

Substituting (89) in (38), we obtain

(90) ws = (N -+ L)o® + 'b,b38.

An unbiased estimate of L¢3 is, from (75) and (48),

I

I

I

O = V + L) = 2l + 2t + o (s + 7).

An unbiased estimate of ;5 1s, from (87),

2‘,23 .

L
(92) w5 = 2z + 2z + — I

The latter will also be an unbiased estimate of .y, sinee

(93) E <N et i [> ol

It would not, however, be as stable an estimate as ¥, since the rightmost
term of (91) is based on more observations than the rightmost term of (92).
If 5 were used to estimate iz it would have a positive bias, since, from
(88) and (90),

09 Buldp = v + Do+ ZEEE) oy g 2 g,

In practice, it would often be convenient to express these estimates in
terms of the multiple eorrelation cocfficient. If the metrie of the third seetion
is assumed, the clements of z, and z will be the corrclations between the
factor scores and the criterion, or factor validities. Sinee the factor scores
are uncorrelated, the squared multiple eorrclation between the first L factors
and the eriterion will be

2
(95) P =2z =1 — 2z, — 2z,
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Henee (91) and (92) are equivalent to

" 2L(1 — Rj
(96) s =1—RL+ _—Z(\’——Ll)’
and

] 2L — R}
90) w¥s=1—Ri + H

Equation (96) is, of course, equivalent to (49). Although .y and 5 will
in general differ only very slightly, the former is to be preferred in applica-
tions, since 12, will be less inflated by overfit than will R,,.

In theoretical comparisons of different factor solutions, ,¢; will be most
useful, since it is a function of the loadings of the discarded factors. The
optimal factor solution would be that which minimized the rightmost term
of equation (90).

Some Particular Reduced Rank Procedures

Of the five particular rank-reduction procedurcs considered in the
present study, three involve prediction from principal-axes factors, and two
involve prediction from a subset of the original predictors. Summerfield and
Lubin (1951) have shown that a subset of predictors is equivalent to a subset
of orthogonal triangular (or square-root) factor scores. The first factor is
simply the first predictor. The sccond factor is that portion of the sceond
predictor which cannot be predicted from the first. The third factor is that
portion of the third predietor which cannot be predicted from the first and
sccond. The remaining factors are similarly obtained. Each factor will thus
be independent of the earlier factors and of the predictors corresponding to
them, and will therefore have zero loadings on those predictors. Accordingly,
the factor-loading matrix will be a lower triangular matrix, i.c., its supra-
diagonal elements will all be zero.

The predictor-sclection and predictor-elimination methods may be
thought of as procedures for placing the predictors in the approximate order
of their contribution to the multiple corrclation with the criterion. Since the
triangular factors are determined by the ordering of the predietors, the first I
factors will tend to give the highest multiple correlation obtainable with a
subset of I predictors.

Prediction from the principal-axes factors giving the highest validity is
similar to these methods in that the subset of factors to be retained is entirely
determined by the characteristics of the sample from which regression
weights are to be computed. Under these circumstaneces, none of the indices
of validity or weight-validity is directly applicable, since all are based on the
assumption that, for given L, the subset of predictors to be retained is deter-
mined in advance of observing the criterion. A detailed analysis of the con-
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sequences of choosing factors on the basis of the observed y will not be
attempted. Clearly, however, the fewer the degrees of freedom available, the
larger will be the variance of the sample validities, and the smaller the
probability that the subset of L factors having the largest true validity will
give the largest sammple validity. Moreover, the true validity for the subsect
chosen would tend to fall short of the true validity for the optimal subset,
and the sample validity for the chosen subset would tend to overestimate its
true validity, in inverse proportion to the degrees of freedom. Still, it seems
that subsets of predictors scleeted in this way would usually have higher true
vahidities than would arbitrarily chosen predietors.

Although the foregoing discussion is not conercte enough to lead to
precise conelusions, it does suggest the desirability of having a method of
factoring that would provide an a priori expeetation as to the contributions
to validity of the individual factors. The suceess of using approximation to
the intereorrelation matrix or to its inverse as a criterion for seleeting pre-
dictors will in part be determined by the extent to which eontribution to the
approximation is related to contribution to vahdity.

In describing the two particulur factor methods in terms of the general
model of the preceding seetion, we will consider first the triangular faetors.
For the general factor-loading matrix, b, we substitute a lower triangular
factor-loading matrix, /. But where b was partitioned only after the Lth
column, we will partition ¢ also after the Lth row, so that

o 01

(98) t=1[h b]= [ |

lya  loa-

We will partition the inverse of ¢ similarly, and denote it by 7”. It may be
readily verified that

I_TI"I t;l O- S0
(9()) T/ = I 1 —_ E l= i,
L) L=ttty 2]

Tt will also be convenient to partition the predietor matrix z after the Lth
column, and to partition the regression veetors 8 and 8 after the Lth element.
We first note, from (52), that

(100) z = [r, 2] = wt] +witi = [l wdi] + [0 Upts].
Thus

(101) wtl = [¥ wi]
and
(102) Ty = Wiilis + Usiis.

The first term on the right of (102) is that portion of 2, which can be predicted
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from z;, while the second term is that portion of z, which is indenendent of z,.

Thus the “redueced-rank approximation” of x on which predictions are based

is from (101) eomposed simply of the retained predictors augmented by the

portion of the discarded predietors that is determined by those retained.
From (63) and (653), the estimated regression weights will be

(103) 5= Tuly = P(th)‘lu{ﬂ _ [Ef!‘
0 B..
Their expected values, under the full-rank hypothesis, will be, from (76)

r -1 I 7 \N=1,7 g nig=3
(109 E@) = T\48 = ’_(t“) }[th tz’llrﬁ ' J = Bt ) E(‘B‘)}
_ 0 L8, 0 7(B.)

The value for F(8,) in (104) may be thought of as an expression for the
optimal weights for a subset of predietors in terms of the optimal weights
for the entire set. The original weights for the retained predictors are altered
as a function of the original weights for the discarded predictors. This illus-
trates the point made in the section on aceuracy of predietions, to the effect
that weights for a subset of predictors cannot be properly cvaluated in terms
of how elosely they approximate the weights for the entire set. The eovariance
matrix of the sample regression weights, obtained from (79), is

=1y g1
(105) Cs = o°T\T! = Ua[(tu )i o}
0 0

S

The expected values of the transformed eriterion observations will be,

fromn (83),
RIS |
(106) E@) = |EG) | =|t8| = ‘ s |-
e Lol L o |
Trom (90), the inverse index of weight efficiency yy; is given by
107)  w¥s = (N + D)o* + 8638 = (N + L)o* + Bitastiafs.

To obtain the principal-axes solution, we first express the predictor
matrix z in terms of its basie structure (Horst, 1961, eh. 17):

(108) z = PAQ'.

Now, in plaee of the general faetor-score matrix u we have the prineipal-axes
factor-score matrix P. The prineipal-axes factor-loading matrix, corresponding
to the general b is given by QA, where @ is a square orthonormal and A a
diagonal matrix. Equation (50) now takes the form

(109) r'r = QA'Q’,

8+ 18,
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The cigenvalues and cigenveetors of 2’z will be given by the clements of A
and the eolumns of @ respectively. We may partition the factors on the right
of (108) to obtain

z = [P, Pz][A’ 0rer]

0 ALQL
(110) — Py Py ]
LALQ)

= PIAIQ{ + PzAzQS-

As before, both the factor-score and factor-loading matrices are econsidered
to be partitioned after the Lth column. For the inverse of the factor-loading
matrix, B, we will now have

AT'QT
ANQ; .

(11]) [QIAI QzAz]_l =

The sample regression vector is, from (63) and (653),
(112) B = QA 'Ply.

Under the full-rank hypothesis, the lower-rank sample regression weights will
have the covarianee matrix, from (79),

(113) Cs = " QAQ].

From (83), the canonical form of the criterion will have the expectation
B [a0i8]

(114) B = | e | = | 808 &
E(zs),I 0

Equation (90) will now take the form

(115) w¥s = NV + L)y + 'Q.A2Q48.

The specific reduced-rank prediction models may be obtained from the
foregoing development by assuming appropriate permutations cither of the
predictors, in the case of triangular factors, or of the columns of I’ and @,
and of the clements of A, in the case of principal-axes factors. We note from
(73) and (83) that cach element of z, and #, is determined by only one factor:
the observed value by the factor scores, the expeeted value by the factor
loadings. In predictor selection, each time a predictor is seleeted, a factor,
and hence an clement of z,, is determined. At cach step in the procedure,
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that predictor is seleeted which will make the next element of z, as large
(in absolute value) as possible. In predictor elimination, a factor and henee
an clement of z, is determined each time a predictor is climinated. At each
step, that predietor is climinated which will make the next element of 2, as
small (in absolute value) as possible.

In the method of predieting from the factors giving the best least-squares
approximation to the predictor intercorrelation matrix, the elements of A are
placed in order from largest to smallest, so that the largest are in A, and the
smallest in A,. If the inverse is to be approximated, the clements of A are
placed in the opposite order, 1.c., from smallest to largest. (When we speak
of ordering the elements of A, we assume, of course, that the columns of P
and Q are permuted correspondingly.) In the method of predicting from the
principal-axes factors giving the highest validity, the factors are permuted
so as to place the elements of 2, and z, in order of absolute value from largest
to smallest, with the largest values in z,, the smallest in 2.

The Problem of Finding an Optimal Reduced-Rank Solulion

There are three major problems involved 1n obtaining an optimal reduced-
rank solution. The first concerns the method of rank reduction: whether
subsets of the original predictors, of the prineipal-axes factors, or of factors
obtained by some other method will give the most accurate prediction in
future samples. The second problem is, having obtained the factors, to
specify the subset of a given size that may be expected to provide the greatest
aceuracy of prediction. The third problem i1s, having specified the subset
which would be used for any given rank, to determine the particular rank
that will tend to lead to the most accurate predictions.

The cstimate of the inverse index of weight-efficieney given in (91) and
(96) provides a solution (or a potential solution) to the third problem. It
does not, however, enhance our ability to deal with the sccond problem, sinee,
as can be scen from (96), it merely indieates the traditional approach; namely,
to attempt to sclect that subsct of predictors of given size having the highest
multiple correlation with the eriterion. The drawbacks of such an approach
when degrees of freedom are limited were discussed in the preceding seetion.
Siee a reduced-rank solution is indicated only when degrees of freedom
are limited, a sclection method that is independent of the eriterion might
well be preferable. Some evidence favoring this view is provided in the
cmpirical portion of the present study. In the present seetion we assume that
view to be correet and accordingly consider only methods of seleetion which
are independent of the criterion.

If the present analysis is correet, an optimal solution will be one which
minimizes ;5 as given in (90). In the absenee of observations on the criterion,
nothing can be said about 8 or ¢°, so our only course is to seck a value for
b, which will minimize 80,058 for gencral 8. The quantity to be minimized
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may also be expressed as the sum of squares of the expected values of the
2, s given in (83):

(116) B'0:b18 = [E(z)]'[E(22)].

Minimizing this quantity will be equivalent to making the elements of F(z.)
as small (in absolute value) as possible. We let the sth clement of

(117 5= |¥ @‘)}
4 (22)

be denoted by Z,. If we knew these values, the second of the problems stated
above would be solved by discarding those factors for which z; was smallest.
Denoting the column of factor loadings for the ith factor by b ,, we have,
from (83),

(118) 2, = bl.B.

Let D be a diagonal matrix whose 7th element is given by
(119) D= Vb

Let

(120) W = bD™".

Denoting tlie ¢th column of W by W ., we have

(121) waw.,= Z::—Z: =1,

The cxpected values of z, and 2z, can now be expressed in terms of D and TV as

(122) z = '8 = DWW,
or
(123) 5 = DW'.8.

Since we have assumed that nothing is known about 8, and since (121) holds
for all 4, we can have no a priori expeetation as to the magnitude of W’ 3.
Thus our only basis for predicting the rank order of the z; in the absence of
criterion observations will be the magnitudes of the D;. A tentative solution
for the problem of which factors to retain for prediction, then, will be to dis-
card those faetors having the smallest values of D,. From (119), we see that D?
is the sum of squares of the loadings for the ¢th factor, or the variance ac-
eounted for by that factor. Thus, for a rank-L solution, we wish to retain those
L factors giving the best least-squares approximation to the predictor matrix.

It is well known that the principal-axes factors will give a better least-
squares approximation to the predietor matrix than will factors obtained
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by any other method. Thus, as a tentative answer to the first of the above
problems we obtain the prineipal-axes solution.

Now, given the restriction that the factors be selected independently of
the criterion, we can state that the best prediction possible with a reduced-
rank solution will be obtained from the principal-axes factors giving the
best least-squares approximation to the eorrelation matrix. We note that, for a
principal-axes solution, D and TV become the A and Q of the preceding section.
Thus we can also state that the method of approximating the inverse will give
the worst possible predictions, since with that method one diseards the factors
corresponding to the largest elements of A.

We have showr that, with appropriate assumptions, the principal-axes
factors making the largest contribution to the variance of the predictors (or
simply, the largest principal-axes factors) are optimal with respeet to our
index of expeeted aceuracy of predietion. It may be shown that the factors
arc also optimal with respeet to the variance of the sample regression weights.
The sum of these variances will be smaller than for any other method of rank
reduction. From (69) (or (79)), this sum will be proportional to the trace of
B,B!. We lct

(124) ¢ = Bw = Byl + B,

so that

(125) ¢’ — Byub = Bjuf.

It is well known that

(126) tr (,B{B]) = tr (B,BY)

will be a2 minimum when B, is composed of the largest principal-axes factors of
(127) ¢'g = BB = (z'r) ' = QAT*Q".

Equivalently, the above traec will be a maximum when b, is composed of the
largest principal-axes factors of z'z.

The major conclusion of this seetion is that, in the absence of criterion
observations, the best index to use for scleetion of predictors or factors will
be the amount of variance accounted for in the predictor data matrix. In the
case where a subset of the original predictors is to be used, one would climinate
those predictors for which the trace of £y, in (107) is a minimum. Where
a factor solution is feasible, the largest prineipal-axes factors would be re-
tained. The important question of how many degrees of freedom must be
available before the eriterion observations can be used to advantage in the
selection process has been left open. Thiis a sound basis for deciding whether
to use the methods above or to use methods which atiempt to maximize the
sample multiple correlation with the eriterion is still lacking.



CHAPTER 3

AN EMPIRICAL COMPARISOXN OT FIVE
REDUCED RANK PROCEDURES

The Data

A typical application of regression methods is to the problem of predicting
academic sucecess as measured by eollege grades. The data for the present
comparisons were taken from a reeent study of academic prediction by
Shanker (1961). Twenty-nine predietor variables and five separate eviterion
variables are used. Fifteen of the predictors are those composing the Uri-
versity of Washington Entrance Batiery. These have been in use for predicting
college grades since 19533, and include age, sex, test scores, and high-school
grades. The remaining predictors are taken from the Edwards Personal
Preference Schedule (EPPS). The 15 variables of the EPPS are ipsative; i.c.,
any one can be computed exactly from the remaining 14. Accordingly, only
14 are used here, sinee the 15th would be completely redundant for purposes
of predietion. The EPPS variables are deseribed by Edwards (1954). Deserip-
tions of the IEntrance Battery variables are given by Shanker (1961). Since
the speeific nature of the predictors is not of immediate interest in the present
study, we simply list them here.

Edwards Personal Preference Sehedule Variables

1. Achievement 8. Suecorance

2. Deferenee 9. Dominance

3. Order 10. Abasement

4. Exhibition 11. Nuwrturanee

5. Autonomy 12. Change

6. Affiliation 13. Endurance

7. Intraception 14. Heterosexuality

High-Sehool Grade-Point Averages

15. English 18. Social Seience
16. Mathematies 19. Natural Scicnee
17. Toreign Language 20. Llectives
Test Seores
21. Vocabulary 235. Mathematies
22. Mechanical Knowledge 26. Social Science
23. English Usage 27. Quantitative Reasoning

24. English Spelling
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Other Variables
28. Age
29. Sex (coded 0 for male, 1 for female)

The eriterion variables consist of grade-point averages in various college
course areas, The five criteria chosen for the present study were those having
500 or more cases available, as listed below.

1. All-University, 973 cases 4. Chemistry, 526 cascs
2. Mathematies, 541 cases 5. Psychology, 307 cases
3. English Composition, 804 cases
The cases used were 973 students who entered the University of
Washington as freshmen between 1953 and 1958, Ouly those students were
included for whom measurements on all predictors and at least one eriterion
variable were available. Scores on the eriterion variables and on the Entrance
Battery (predictors 15-29) were obtained from the files of the University of
Washington Division of Counseling and Testing Services, The EPPS data
(predictors 1-14) were obtained partly from Edwards, partly from Wright
(1957), and largely from the Division of Counseling and Testing Services files.

Method

The five reduced-rank prediction methods chosen for comparison were
the following,.

1. The predictor-climination method (Horst and MacEwan, 1960)

. Predictor sclection by the accretion method (Horst, 1955)

The method of largest principal-axes factors (IHorst, 1941)

. The method of smallest principal-axes factors (Guttman, 1958)

. The method using the principal-axes factors giving the highest
multiple correlation.

oo 1

S}

As noted in the introduction, we can be virtually certain that, for su